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1. Governing equations1

The depth-averaged 2D model for the hydrodynamic shallow �ows involves the conti-2

nuity equations for the �ow volume, rewritten here as3

∂(h)

∂t
+

∂

∂x
(hu) +

∂

∂y
(hv) = r − i (1)

and the conservation laws of the linear momentum along the x− and y−coordinates,4

which can be expressed as5

∂(hu)

∂t
+

∂

∂x
(hu2 +

1

2
gψh

2) +
∂

∂y
(huv) = −gψh

∂zb
∂x

− τbx
ρ

(2a)

∂(hv)

∂t
+

∂

∂x
(huv) +

∂

∂y
(hv2 +

1

2
gψh

2) = −gψh
∂zb
∂x

− τby
ρ

(2b)

being h the vertical �ow depth and u = (u, v) the depth-averaged �ow velocity vector, zb6

the bed layer elevation, τb = (τbx, τby) the depth-averaged basal resistance vector and ρ7

the �ow density. The terms on the right hand side of the continuity equation account for8

the e�ective rainfall r and the in�ltration rate i. It is worth noting that the dispersive9

terms on the right hand side have been neglected. The local bed-normal projection of10

the gravity has been used here to integrate the pressure and volumetric force terms, with11

gψ = g cos2 ψ, being g the gravitational acceleration and ψ the bed-normal angle respect12

to the vertical axis [1].13

*** Hay que implmentar la proyeccion de la gravedad gψ en el R-solver (water.cu) ***14

The basal shear stress vector in the momentum equations (2) is expressed as15

τb = (τbx, τby) = τb nu (3)

being nu = (nux, nuy) the velocity unit vector and τb the basal shear stress modulus16

estimated by the turbulent Manning relation, written as17

τb = ρgψh
n2
b

h4/3
|u|2 (4)

being nb the Manning roughness parameter.18
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The equations forming the system can be recast as �ve conservation laws and rewritten19

in vector form as20

∂U

∂t
+∇ · E(U) = Q(U) + Sb(U) + Sτ (U) (5)

where U is the vector of conserved variables21

U =
(
h, hu, hv

)T
(6)

and E(U) =
(
F(U),G(U)

)
are the convective �uxes along the X = (x, y) horizontal22

coordinates respectively.23

F(U) =

 hu
hu2 + 1

2
gψh

2

huv

 G(U) =

 hv
huv

hv2 + 1
2
gψh

2

 (7)

The vector Q(U) accounts for the mass source terms, whereas the vector Sb(U) and24

Sτ (U) account for the momentum source term associated to the bed pressure and the25

frictional momentum dissipation.26

Q(U) =

 r − i
0
0

 Sb(U) =

 0

−gψh∂zb∂x
−gψh∂zb∂y

 Sτ (U) =

 0
− τb

ρ
nux

− τb
ρ
nuy

 (8)

2. Finite Volume method27

System (5) is time dependent, non linear and contains mass and momentum source28

terms. It can be classi�ed as belonging to the family of hyperbolic systems. In order to29

obtain a numerical solution, the spatial domain is divided in computational cells using30

a �xed-in-time mesh and system (5) is integrated in each cell Ωi. Applying the Gauss31

theorem leads to32

d

dt

∫
Ωi

U dΩ +

∮
∂Ωi

E(U) · n dl =
∫
Ωi

Q(U) dΩ +

∫
Ωi

Sb(U) dΩ +

∫
Ωi

Sτ (U) dΩ (9)

being E(U) · n the normal �ux and n = (nx, ny) the outward unit normal vector along33

the i cell boundary ∂Ωi. Assuming a piecewise uniform representation of the conserved34

variables U at the cell Ωi, the integrated system (9) can be expressed as35

d

dt

∫
Ωi

U dΩ +
NE∑
k=1

(E · n)k lk =
∫
Ωi

Q(U) dΩ +

∫
Ωi

Sb(U) dΩ +

∫
Ωi

Sτ (U) dΩ (10)

being NE the number of edges for the i cell, (E · n)k the value of the normal �ux through36

the kth edge, lk the length of the edge.37

The left hand side of (5), the conservative �ux matrix E(U) satis�es the rotation38

invariant property [2] since39

∇ · E(U) = R−1
k ∇̂ · E(RkU) (11)
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Figure 1: Local coordinates at the kth cell edge.

where ∇̂ = Rk∇ and Rk is a 2×2 rotation matrix which projects the global orthogonal40

coordinates X = (x, y) into the local framework X̂ = RkX = (x̂, ŷ), being x̂ and ŷ the41

normal and the tangential coordinate to the kth cell edge respectively (Figure 1):42

Rk =

(
n
t

)
k

=

(
nx ny
−ny nx

)
k

(12)

where n = (nx, ny) and t = (−ny, nx) are the normal and tangential unit vectors respec-43

tively. The complete 3×3 rotation matrix Rk in (11) and its inverse R−1
k for the kth cell44

edge are de�ned as45

Rk =

(
1

R

)
k

=

 1 0 0
0 nx ny
0 −ny nx


k

R−1
k =

(
1

R−1

)
k

=

 1 0 0
0 nx −ny
0 ny nx


k

(13)

and the convective �ux term in (10) satis�es the condition [3]46

(E · n)k =
[
F(U)nx +G(U)ny

]
k
= R−1

k F(RkU) (14)

Using (14), the homogeneous left hand side of (10) can be expressed as47

d

dt

∫
Ωi

U dΩ +
NE∑
k=1

R−1
k F(Û)k lk (15)

where Û ≡ RkU and F(Û)k ≡ F(RkU) denote respectively the set of local conservative48

variables and the conservative �ux vector at the cell edge, de�ned as49

Û ≡ RkU =

 h
hun
hvt

 F(Û)k ≡ F(RkU) =

 hun
hu2n +

1
2
gψh

2

hunvt

 =

 qn
mn

mt

 (16)

being un = unx + vny and vt = −uny + vnx the components of the �ow velocity in the50

local framework û = Rku. We denote as qn the mass �ux normal to the cell edge, and51

mn and mt the momentum �ux normal and tangential to the cell edge respectively.52

3



The value of the �uxes through the kth cell edge can be augmented incorporating the53

non-conservative contribution of the momentum source terms Sb and Sτ into the homo-54

geneous normal �uxes F(Û)k [4]. The bed-pressure term Sb is unconditionally invariant55

under rotation [5] and can be included within the local framework (x̂, ŷ) using the spatial56

discretization57 ∫
Ωi

Sb(U) dΩ =
NE∑
k=1

R−1
k H(Û)k lk (17)

where58

H(Û)k =

 0
−gψ h∆zb

0

 (18)

is the integrated bed pressure at the kth cell edge [6] expressed in the local framework59

(see Section 2.4).60

The spatial discretization of the basal resistance integral is open to di�erent possibil-61

ities since, contrarily to bed-pressure momentum source contribution, the maintenance62

of the rotation invariant property is not straightforward for the 2D shear stresses. The63

upwind discretization of the 2D basal resistance term allows to rewrite the cell-centered64

integral of the the basal shear stress as a sum of edge-contributions65 ∫
Ωi

Sτ (U) dΩ =
NE∑
k=1

R−1
k T(Û)k lk (19)

where T(Û)k is the integrated basal resistance throughout the kth cell edge, expressed in66

the local framework using a di�erential approach (Figure 2) as67

T(Û)k =

 0
− τb

ρ
nu · dc

0


k

(20)

with nu = (nux, nuy) velocity direction vector and dc = (∆x,∆y) the space-vector between68

cell centres in the global coordinate system, due to the rotation invariance of the scalar69

product nu · dc = (Rknu) · (Rkdc) [2].70

Figure 2: Di�erential procedure for the integration of the 2D resistance force.

Using (17) and (19), the local homogenous equation (15) can be augmented with the71

momentum source contributions as72
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d

dt

∫
Ωi

U dΩ = −
NE∑
k=1

R−1
k

[
F(Û)−H(Û)−T(Û)

]
k
lk (21)

allowing to de�ne an augmented numerical �ux F↓
k for the kth cell edge de�ned as73

F↓
k =

[
F(Û)−H(Û)−T(Û)

]
k

(22)

Furthermore, the hydrological term Q(U) accounts for a �ow volume source/sink and74

hence its nature is di�erent from the other source terms on the right hand side of (10).75

For the sake of simplicity, it is discretized in space as76 ∫
Ωi

Q(U) dΩ ≈ AiQ(Ui) = AiQi (23)

where Ai id the discrete cell area, and the resulting integrated system (10) can be expressed77

as78

d

dt

∫
Ωi

U dΩ = −
NE∑
k=1

R−1
k F↓

k lk + AiQi (24)

Assuming a piecewise uniform representation of the conserved variables U at the i cell79

for the time t = tn80

Un
i =

1

Ai

∫
Ωi

U(x, y, tn) dΩ (25)

and using explicit temporal integration for the mass and momentum source terms, the81

updating formulation for the conserved variables U at the each cell is expressed as82

Un+1
i = Un

i −
∆t

Ai

NE∑
k=1

R−1
k F↓

k lk +∆tQn
i (26)

being ∆t = tn+1− tn the time step. Hence the resolution procedure needs to compute the83

numerical �uxes F↓
k at the cell edges.84

This updating formula also admits a �ux-contribution version by considering that the85

�ux vector at the intercell edge F↓
k can be rewritten as F↓

k = F(RkUi) + δF↓
k, where86

the term δF↓
k accounts for the �ux step between the cell center and the intercell edge.87

Considering that
NE∑
k=1

R−1
k F(RkUi) = 0, the �ux-contribution version of the updating88

equation (26) can be expressed as:89

Un+1
i = Un

i −
∆t

Ai

NE∑
k=1

R−1
k δF↓

k lk +∆tQn
i (27)

2.1. Augmented Riemann solver for hydrodynamic �ows90

The augmented numerical �ux F↓
k in the local framework X̂ = (x̂, ŷ) of the kth edge,91

separating the left i cell and the right j cell, can be computed as the approximate solution92

of a constant-coe�cient linear Riemann problem (RP) [3] de�ned as93
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∂Û

∂t
+ J̃k

∂Û

∂x̂
= Ŝb + Ŝτ

Û(x̂, 0) =

{
Ûi = RkU

n
i if x̂ < 0

Ûj = RkU
n
j if x̂ > 0

(28)

where J̃k = J̃k(Ûi, Ûj) is a constant coe�cient matrix which locally approximates the Ja-94

cobian of the non-linear RP, whereas Ŝb and Ŝτ are the bed-pressure and basal resistance95

source terms in the local framework.96

Integrating the homogeneous left hand side of (28) over the discrete space x̂i ≤ x̂ ≤ x̂j97

leads to the following constraint involving conservation across discontinuities98

δFk = J̃k δÛk (29)

where δÛk = Ûj − Ûi and δFk = F(Ûj) − F(Ûi) are the conserved variables and the99

homogeneous �uxes increment at the kth edge, respectively.100

Using the Roe strategy [3], the approximate Jacobian J̃k reduces to a 3× 3 constant101

matrix de�ned as102

J̃k =

 0 1 0

gψh̃− ũ2n 2ũn 0
−ũn ṽt ṽt ũn


k

(30)

which satis�es (29) with the wall-averaged quantities103

h̃ =
hi + hj

2
(31a)

ũn =
uni

√
hi + unj

√
hj√

hi +
√
hj

(31b)

ṽt =
vti

√
hi + vtj

√
hj√

hi +
√
hj

(31c)

The approximate matrix J̃k (30) is diagonalizable with four real eigenvalues104

(λ̃1)k = (ũn − c̃)k (λ̃2)k = (ũn)k (λ̃3)k = (ũn + c̃)k (32)

where the averaged wave-celerity is c̃k =

√
(gψ h̃)k. Using the properties of the Jacobian,105

it is possible to build a matrix P̃k = (ẽ1, ẽ2, ẽ3)k which satis�es J̃k = (P̃Λ̃P̃−1)k, being Λ̃k106

the diagonal eigenvalues matrix and (ẽm)k the orthogonal basis of eigenvectors, de�ned107

as108

(ẽ1)k =

 1

λ̃1
ṽt


k

(ẽ2)k =

 0
0
c̃


k

(ẽ3)k =

 1

λ̃3
ṽt


k

(33)

Following [3], the conservative variable gradient δÛk is projected on the eigenvector109

basis in order to obtain the wave strength vectors Ãk as110

Ãk = (α̃1, α̃2, α̃3)
T
k = P̃−1

k δÛk −→ δÛk =
∑
m

(α̃wẽw)k (34)
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being111

α̃1 =
1

2
δ(h)− 1

2

δ(hun)− ũn δ(h)

c̃

α̃2 =
δ(hvt)− ṽt δ(h)

c̃

α̃3 =
1

2
δ(h) +

1

2

δ(hun)− ũn δ(h)

c̃

(35)

The bed-pressure and basal resistance momentun source terms on the right hand side112

of (28) are integrated over the discrete space x̂i ≤ x̂ ≤ x̂j as113

x̂j∫
x̂i

Ŝb dx̂ = H(Ûi, Ûj) = Hk = (0, H̃, 0)Tk (36a)

x̂j∫
x̂i

Ŝτ dx̂ = T(Ûi, Ûj) = Tk = (0, T̃ , 0)Tk (36b)

and these momentum edge-contributions can be projected on the eigenvector basis in114

order to obtain the source strength vectors as115

(B̃b)k = (β̃b1, β̃b2, β̃b3)
T
k = P̃−1

k Hk −→ Hk =
∑
m

(β̃bmẽw)k (37a)

(B̃τ )k = (β̃τ1, β̃τ2, β̃τ3)
T
k = P̃−1

k Tk −→ Tk =
∑
m

(β̃τmẽw)k (37b)

and the total source strength reads116

B̃k = (β̃1, β̃1, β̃4)
T
k = (B̃b + B̃τ )k (38)

leading to117

β̃1 =
−1

2

H̃ + T̃

c̃

β̃2 = 0

β̃3 =
1

2

H̃ + T̃

c̃

(39)

Note that this procedure allows to include the upwind contribution of the real 2D118

bed-pressure and basal resistance source terms into the plane RP at the cell edges. The119

integration of both contributions at the cell edges are detailed in sections 2.4 and 2.5120

respectively.121

One result of Roe's linearization is that the approximate Riemann solution consists122

of only discontinuities and hence Û(x̂, t) is constructed as a sum of discontinuities or123

shocks. Figure 3 shows the wave structure of the approximate solution for subcritical and124

supercritical �ow regimes. Using (35) and (38), the intermediate states (blue regions) of125

the approximate solution at the left and right side of the kth edge, Û−
i and Û+

j respectively,126

can be expressed as127
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Figure 3: Approximate solution at the kth cell edge for (left) subcritical and (right) supercritical regime.

Û−
i = Ûi +

∑
w−

[
(α̃w − β̃w/λ̃w) ẽw

]
k

Û+
j = Ûj −

∑
w+

[
(α̃w − β̃w/λ̃w) ẽw

]
k

(40)

where the subscript m− and m+ under the sums indicate waves travelling inward and128

outward the i cell [4]. Note that at x̂ = 0 the solution includes a steady discontinuity129

between the intermediate states Û−
i and Û+

j [7, 8] as a consequence of including the130

momentum source terms into the local plane RP. This steady shock can be expressed as131

Û+
j − Û−

i =
3∑

w=1

( β̃w
λ̃w

ẽw

)
k

(41)

Consequently, the augmented �ux at the left and right side of the kth cell edge, F↓−
k132

and F↓+
k respectively, can be constructed as133

F↓−
k = F(Ûi) +

∑
w−

[
(λ̃wα̃w − β̃w) ẽw

]
k

F↓+
k = F(Ûj)−

∑
w+

[
(λ̃wα̃w − β̃w) ẽw

]
k

(42)

where the subscript m− and m+ under the sums indicate waves travelling inward and134

outward the i cell. The relation between the approximate �uxes F↓−
k and F↓+

k can be135

analysed using the Rankine-Hugoniot (RH) relation at x̂ = 0, which includes the steady136

contact wave accounting for the momentum sources. The corresponding �ux discontinuity137

is given by138

F↓+
k −F↓−

k =
3∑

w=1

(β̃wẽw)k = Hk +Tk (43)

Therefore, the numerical �ux vectorF↓
k in the updating formula (26) of the FV method139

is upwind computed as140
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F↓
k ≡ F↓−

k =

 qn
mn

mt

↓−

k

(44)

whereas the �ux-contribution in the updating formula (27) can also be upwind calculated141

as142

δF↓
k ≡ δF↓−

k =
∑
w−

[
(λ̃wα̃w − β̃w) ẽw

]
k
=

 δqn
δmn

δmt

↓−

k

(45)

2.2. Entropy correction in transcritical rarefactions143

To avoid non-physical result in walls involving transonic rarefactions, an improved144

version of the the Harten-Hyman entropy correction [9] is implemented.145

The eigenvalues at the left i and right j cells at the kth edge are de�ned as146

(λ1)i,j = (un − c)i,j (λ2)i,j = (un)i,j (λ3)i,j = (un + c)i,j (46)

Only for wet-wet subcritical walls, i.e. (λ̃1)k < 0 & (λ̃3)k > 0, the entropy �x is147

implemented as follows148

� Left transcritical rarefaction (λ1)i < 0 & (λ1)j > 0149

ECF =
(λ1)j − (λ̃1)k
(λ1)j − (λ1)i

(λ1)i < 0

(λ̃−1 )k = ECF → new (λ̃1)k

(λ̃+1 )k = (λ̃1)k − ECF

(47)

� Right transcritical rarefaction (λ3)i < 0 & (λ3)j > 0150

ECF =
(λ̃3)k − (λ3)i
(λ3)j − (λ3)i

(λ3)j > 0

(λ̃−3 )k = (λ̃3)k − ECF

(λ̃+3 )k = ECF → new (λ̃3)k

(48)

2.3. Dynamic time step restriction151

In order to ensure the stability of the explicitly computed numerical solution, the time152

step should be small enough to avoid the interaction of waves from neighbouring Riemann153

problems. The dynamical limitation of the time step at each k edge is addressed here154

assuming that the fastest wave celerity corresponds to the absolute maximum of the155

eigenvalues of J̃k (30) as156

∆tk =
min(Ai, Aj)

lk

[
max(|λ̃1|, |̃λ3|)

]
k

(49)

*** Hay que cambiar el calculo de ∆Xk en el codigo (mesh.c) ***157

and the global time step ∆t = tn+1 − tn is limited using the Courant-Friedrichs-Lewy158

(CFL) condition159
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∆t = CFL min
k

(∆tk) (50)

with CFL < 0.5 for square orthogonal meshes and CFL < 1 for the triangular mesh160

topology and 1D-mesh cases.161

2.4. Bed pressure momentum contribution162

The bed pressure contribution H̃k at the kth cell edge in (39) is computed here as163

H̃k =

{
H̃ int default

max(H̃ int, H̃dif ) if (ũn∆zb) > 0 and (∆zs∆zb) > 0
(51)

being164

� Integral approximation:165

H̃ int = −gψ
(
h∗ − |δz∗|

2

)
δz∗

h∗ =

{
hi if ∆zb < 0
hj if ∆zb ≥ 0

δz∗ =


−hj if ∆zb < 0 and zsj < zbi
hi if ∆zb ≥ 0 and zsi < zbj
∆zb otherwise

(52)

� Di�erential approximation:166

H̃dif = −gψ h̃∆zb (53)

The mass �ux at the x̂ = 0 position satis�es the conservative condition (qn)
↓−
k =167

(qn)
↓+
k = q↓n. Furthermore, we compute the characteristic frictionless mass �ux q∗n for the168

kth cell edge as169

q∗n = (hun)i + α̃1λ̃1 − β̃b1 if subcritical λ̃2 > 0 or supercritical λ̃3 < 0

q∗n = (hun)j − α̃3λ̃3 + β̃b3 if subcritical λ̃2 < 0 or supercritical λ̃1 > 0
(54)

Figure 4: Inner states for the normal mass �ux in edges with right-direction subcritical �ow.
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2.5. Basal resistance momentum contribution170

The basal resistance contribution T̃k at the kth cell edge in (39) should be opposite to171

the discharge and is hence de�ned as172

T̃k =

 −sgn (q∗n) gψh̃
ñ2
b Ũ

2

h
4/3
max

dint default

0 if q∗n = 0

(55)

where the averaged Manning factor is ñb =
1
2
(nbi+nbj), the characteristic velocity modulus173

is Ũ = 1
2
(|ui| + |uj|), the characteristic �ow depth is hmax = max(hi, hj), and sgn (q∗n)174

denotes the direction of the frictionless discharge throughout the edge. The term dint is175

the friction integration distance, calculated as176

dint =

{
|ñux∆x+ ñuy∆y| default
dnorm if Um < 1e− 3

(56)

being (ñux, ñuy)k the components of the unity vector of the �ow direction at the kth edge177

in the global framework, calculated as178

ñux =
1

2

(
ui
|ui|

+
uj
|uj|

)
ñuy =

1

2

(
vi
|ui|

+
vj
|uj|

)
(57)

3. Explicit integration of momentum source terms179

The correct integration of the momentum source terms Hk (36a) and Tk (36b) for180

the local plane RP associated to the kth cell edge ensures the well-balanced property of181

the augmented Riemann solver [10]. This well-balanced character ensures equilibrium in182

quiescent and steady states, as well as avoids numerical oscillations in the solution when183

large momentum sources appear [11, 12].184

3.1. F-limitation for the basal friction185

The explicit integration of the basal resistance term Tk (36b) is not straight-forward186

and requires a careful treatment in order to avoid numerical instabilities and additional187

time step restrictions. These additional time step restrictions can lead to a marked in-188

crease of the computational time required by the model. The consequence is a reduction189

of the e�ciency, regardless of how the scheme is implemented (programming language,190

parallel computing, available hardware, etc).191

The friction momentum contribution Tk (36b) in the local plane RP at the intercell192

edge is de�ned as193

Tk =

 0

T̃k
0

 (58)

and the source strengths linked to the basal friction are expressed as194

β̃τ1 =
−T̃k
2 c̃k

β̃τ2 = 0

β̃τ3 =
T̃k
2 c̃k

(59)

11



We can always compute the characteristic mass �ux including friction (qn)
↓−
k =195

(qn)
↓+
k = q↓n for the kth cell edge as196

*** Quitar el condicional de regimen el codigo (water.cu)***197

q↓n = q∗n − β̃τ1 (60)

Note that this expression (60) can be directly applied regardless of the �ow direction198

and subcritical/supercritical regime occurs, since di�erences in the wave con�guration are199

actually included in the characteristic frictionless mass �ux q∗n computation. Physically,200

the basal resistance term should always act slowing down the �ow. Therefore, we de�ne201

the following limitation for the resistance source strengths202

β̃τ1 =

{
−T̃k/(2 c̃) default
q∗n if q↓n q

∗
n ≤ 0

β̃τ3 = −β̃τ1
(61)

Additionally, the friction source term is limited by a kinematic condition. We impose203

that momentum dissipated at the intercell edge due to the basal friction term should be204

in the same order of magnitude as the averaged kinematic energy at the edge, so205

|T̃k|
gψ h̃

≤ O

(
Ũ |un|
2 gψ

)
(62)

3.2. P-correction for the �ow depth206

The momentum source integration can lead to unphysical values of the cell-averaged207

�ow depth in subcritical wet-wet edges and requires a numerical �x. The P-corrention208

enforces non-negative values of the �ow depth for the intermediate states at both sides of209

the intercell edge.210

Only in wet-wet subcritical walls, i.e. (λ̃1)k < 0 & (λ̃3)k > 0, the convective211

intermediate state for the �ow depth h∗ at both sides of the edge, including the entropy-212

�x extra wave, can be calculated as213

h∗i = hni + α̃1 −
λ̃−3

λ̃1
α̃3 (63a)

h∗j = hnj − α̃3 +
λ̃+1

λ̃3
α̃1 (63b)

and the augmented intermediate states for the �ow depth at the left and right side of the214

edge, h−i and h+j respectively, must satisfy215

h−i = h∗i −
β̃1

λ̃1
≥ 0 (64a)

h+j = h∗j +
β̃3

λ̃3
≥ 0 (64b)

This limitation leads to a unique suitability range for the value of the momentum216

source strength β̃1 which ensures positivity for the intermediate states of h at both sides217

of the edge, imposed as218
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β̃1

{
≥ λ̃1 h

∗
i Lower-limit

≤ λ̃3 h
∗
j Upper-limit

(65a)

β̃3 = −β̃1 (65b)

4. Wet-dry front treatment219

Tracking wet-dry fronts is one of the most challenging issues when computing realistic220

cases. We apply a four-step procedure to avoid numerical issues in wet-dry fronts:221

1. Within the edge-contribution calculation loop, at wet-dry fronts, we set the no-222

re�ective-wall condition if the �ow depth inner state at the dry-cell, i.e. h−i and h+j223

for left and right dry-cells respectively, is negative:224

Right dry-cell
hni ≥ 10−12

&
hnj < 10−12


h+j = hnj − α̃3 +

β̃3
λ̃3
< 0

Right solid-wall cond. & (δqn)
↓−
k =

3∑
w=1

(
λ̃wα̃w − β̃w

)
k

(δmn)
↓−
k = 0

(δmt)
↓−
k = 0


otherwise Normal wall

(66)

Left dry-cell
hni < 10−12

&
hnj ≥ 10−12


h−i = hni + α̃1 − β̃1

λ̃1
< 0

Left solid-wall cond. & (δqn)
↓+
k =

3∑
w=1

(
λ̃wα̃w − β̃w

)
k

(δmn)
↓+
k = 0

(δmt)
↓+
k = 0


otherwise Normal wall

(67)

*** Cambiar el calculo del inner h state, sacando la onda de correcion de la entropia225

***226

2. Within the cell updating loop, we set null x− and y−momentum for cells with �ow227

depth hni lower than an user-de�ned threshold, refereed to as minimum-depth hmin:228

Minimum-depth cells
hni < hmin

{
(hu)ni = 0
(hv)ni = 0

(68)

3. At wet-dry fronts, we identify each wet-dry edge with a upward bed level step higher229

than the �ow depth in the wet-cell and we also set solid-wall condition at these edges:230

Left dry-cell
hni < 10−12

&
hnj ≥ 10−12

 (zb)
n
i > (zb + h)nj Left solid-wall cond.

otherwise Normal wall
(69)

13



Right dry-cell
hni ≥ 10−12

&
hnj < 10−12

 (zb + h)ni < (zb)
n
j Right solid-wall cond.

otherwise Normal wall
(70)

4. Finally, within a speci�c cell loop, we set null normal momentum at wet-cells for231

each edge with solid-wall condition or closed boundary condition, as:232

Solid-wall cond.
||

Closed boundary cond.


(hu)ni = (hu)ni − qni nx
(hv)ni = (hv)ni − qni ny

with qni = (hu)ni nx + (hv)ni ny

(71)
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