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Augmented Roe Solver for hydrodynamic shallow flows
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Abstract
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1. Governing equations

The depth-averaged 2D model for the hydrodynamic shallow flows involves the conti-
nuity equations for the flow volume, rewritten here as
d(h) 0 0

W—F%(hu)—i—a—y(hv)zr—i (1)

and the conservation laws of the linear momentum along the x— and y—coordinates,
which can be expressed as

ohu) 0, o, 1 o 0 B 02y T

5 %(hu + égwh )+ a—y(huv) = gwha—x 7 (2a)
8(hv) 8 8 2 1 2\ (92;, Thy

By + ax(huv) + 8y<hv + 29¢h ) = —gyh o (2b)

being h the vertical flow depth and u = (u, v) the depth-averaged flow velocity vector, z,
the bed layer elevation, 1, = (7, Tp,) the depth-averaged basal resistance vector and p
the flow density. The terms on the right hand side of the continuity equation account for
the effective rainfall » and the infiltration rate 7. It is worth noting that the dispersive
terms on the right hand side have been neglected. The local bed-normal projection of
the gravity has been used here to integrate the pressure and volumetric force terms, with
gy = gcos® 1, being g the gravitational acceleration and ¢ the bed-normal angle respect
to the vertical axis [1].

*#* Hay que implmentar la proyeccion de la gravedad g, en el R-solver (water.cu)

The basal shear stress vector in the momentum equations (2) is expressed as

Kokook

Ty = (Tbxﬂ'by) = Tp Ny (3)

being ny = (Nyg, Nuy) the velocity unit vector and 7, the basal shear stress modulus
estimated by the turbulent Manning relation, written as

2
T

Ty = pg¢hh4/3’u’2 (4)

being n, the Manning roughness parameter.
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The equations forming the system can be recast as five conservation laws and rewritten
in vector form as

%_‘tj +V-E(U) = Q(U) + Sp(U) + S, (U) (5)

where U is the vector of conserved variables

U= (h, hu, ho)" (6)

and E(U) = (F(U),G(U)) are the convective fluxes along the X = (z,y) horizontal
coordinates respectively.

hu hv
F(U)=| hu’+ 3g,h° G(U) = huv (7)
huv hv? + £ gyph?

The vector Q(U) accounts for the mass source terms, whereas the vector Sp(U) and
S.(U) account for the momentum source term associated to the bed pressure and the
frictional momentum dissipation.

r—1 0 0
QU)=| o Su(U) = | —guhge S,(U) = [ —Z 7w (8)
0 _gwhaiyb _% Ny

2. Finite Volume method

System (5) is time dependent, non linear and contains mass and momentum source
terms. It can be classified as belonging to the family of hyperbolic systems. In order to
obtain a numerical solution, the spatial domain is divided in computational cells using
a fixed-in-time mesh and system (5) is integrated in each cell ;. Applying the Gauss
theorem leads to

d
E/UdQ+ ]{E(U)-ndl:/Q(U)dQ+/Sb(U)dQJr/ST(U)dQ ()

Q; 09 o8 o8 Q
being E(U) - n the normal flux and n = (n,, n,) the outward unit normal vector along

the i cell boundary 0€2;. Assuming a piecewise uniform representation of the conserved
variables U at the cell Q;, the integrated system (9) can be expressed as

d NE
E/UdQ+Z(E-n)kzk - /Q(U) dQ+/Sb(U)dQ+/ST(U) Q0 (10)
Q k=1 O o o)
being NE the number of edges for the i cell, (E - n); the value of the normal flux through
the kth edge, [ the length of the edge.

The left hand side of (5), the conservative flux matrix E(U) satisfies the rotation
invariant property [2| since

V- -E(U)=R;'V-E(R,U) (11)
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Figure 1: Local coordinates at the kth cell edge.

where V = R,V and Ry, is a 2x2 rotation matrix which projects the global orthogonal
coordinates X = (z,y) into the local framework X = RyX = (Z,9), being Z and ¢ the
normal and the tangential coordinate to the kth cell edge respectively (Figure 1):

(1) =000, @

where n = (n,,n,) and t = (—n,, n,) are the normal and tangential unit vectors respec-
tively. The complete 3x3 rotation matrix Ry, in (11) and its inverse R " for the kth cell

edge are defined as
1 1 0 0
R, = (#—) =1 0 n, mny
R k 0 —ny, ng

k
13
1 1 0 O (13)
W (M)
ny Ny k

and the convective flux term in (10) satisfies the condition [3]

(E-n), = [F(U) 1. + G(U) ny}k — R 'F(R,U) (14)

Using (14), the homogeneous left hand side of (10) can be expressed as
d NE
— [ UdQ R, 'F(U),! 1
i [ Ui R RO (15)
Q; -

where U = R, U and F(U), = F(R,U) denote respectively the set of local conservative
variables and the conservative flux vector at the cell edge, defined as

h huy, In

U=R,U=| hu, F(U), =FRU) = [ hu2 +1gs0® | = | m, (16)
hvt hunvt my

being u,, = un, + vn, and v; = —un, + vn, the components of the flow velocity in the

local framework G = Riu. We denote as ¢, the mass flux normal to the cell edge, and
m, and m; the momentum flux normal and tangential to the cell edge respectively.
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The value of the fluxes through the kth cell edge can be augmented incorporating the
non-conservative contribution of the momentum source terms Sy, and S, into the homo-
geneous normal fluxes F(U),, [4]. The bed-pressure term Sy, is unconditionally invariant
under rotation [5] and can be included within the local framework (Z,y) using the spatial

discretization

NE
[ suyan =Y R HO)LL (1)
& k=1
where
A 0
0

is the integrated bed pressure at the kth cell edge [6] expressed in the local framework
(see Section 2.4).

The spatial discretization of the basal resistance integral is open to different possibil-
ities since, contrarily to bed-pressure momentum source contribution, the maintenance
of the rotation invariant property is not straightforward for the 2D shear stresses. The
upwind discretization of the 2D basal resistance term allows to rewrite the cell-centered
integral of the the basal shear stress as a sum of edge-contributions

/ST(U) dQ=> R T(O)ly (19)

Q;

where T(U)y is the integrated basal resistance throughout the kth cell edge, expressed in
the local framework using a differential approach (Figure 2) as

T0), = | —2ny-dc (20)

k
with n, = (ny., nyy) velocity direction vector and d. = (Axz, Ay) the space-vector between

cell centres in the global coordinate system, due to the rotation invariance of the scalar
product n, - de = (Ryny) - (Ride) [2]-

\AS

Figure 2: Differential procedure for the integration of the 2D resistance force.

Using (17) and (19), the local homogenous equation (15) can be augmented with the
momentum source contributions as
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d NE

E/UdQ = ’;Rgl [F(fj) ~H(0) - T(IAJ)L Iy (21)
Q; o

allowing to define an augmented numerical flux .’Ft for the kth cell edge defined as
Fi = [F(0) - H(O) - T(0)| (22)

Furthermore, the hydrological term Q(U) accounts for a flow volume source/sink and
hence its nature is different from the other source terms on the right hand side of (10).
For the sake of simplicity, it is discretized in space as

/Q' QU) dQ ~ A, Q(U;) = 4; (23)

where A; id the discrete cell area, and the resulting integrated system (10) can be expressed
as

NE
d
E/UdQ:—ZRk_l.’FilkJrAiQi (24)
Qi k=1

Assuming a piecewise uniform representation of the conserved variables U at the i cell
for the time t = t"

1
Ul = o /U(:E,y,t”) dQ (25)
i &,

and using explicit temporal integration for the mass and momentum source terms, the
updating formulation for the conserved variables U at the each cell is expressed as

NE

Ut =Up - % > R FLl+ALQY (26)
! k=1
being At = t"*1 —¢" the time step. Hence the resolution procedure needs to compute the
numerical fluxes ]:t at the cell edges.
This updating formula also admits a flux-contribution version by considering that the
flux vector at the intercell edge Fi can be rewritten as Fi = F(RyU,) + 6Fy, where

the term 5.7-'t accounts for the flux step between the cell center and the intercell edge.
NE

Considering that > Ry " F(R,U;) = 0, the flux-contribution version of the updating
k=1

equation (26) can be expressed as:

NE

At

U = U7 = = ) RO L+ At Q) (27)
b ok=1

2.1. Augmented Riemann solver for hydrodynamic flows

The augmented numerical flux .’Ft in the local framework X = (Z,7y) of the kth edge,
separating the left ¢ cell and the right 5 cell, can be computed as the approximate solution
of a constant-coefficient linear Riemann problem (RP) [3] defined as
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o gy St Sy
X (28)
o U =RUL i § <0
U(x’o)_{ﬁjszU;l it 7 >0

where jk = jk(ﬂz, fJJ) is a constant coefficient matrix which locally approximates the Ja-
cobian of the non-linear RP, whereas S, and S, are the bed-pressure and basal resistance
source terms in the local framework.

Integrating the homogeneous left hand side of (28) over the discrete space &; < & < &;
leads to the following constraint involving conservation across discontinuities

6F, = J, 6U, (29)
where U, = U; — U, and 6F, = F(U;) — F(U,) are the conserved variables and the
homogeneous fluxes increment at the kth edge, respectively.

Using the Roe strategy [3], the approximate Jacobian J; reduces to a 3 x 3 constant
matrix defined as

N 0 1 0
—Up Uy Uy Un ),
which satisfies (29) with the wall-averaged quantities
~ R+ h;
= Lt (31a)

2
~ Univ/hi + Unjr/ P

Uy, = 31b
it/ )
5 vVl + v/l (31c)
L Vhit ks
The approximate matrix Jj (30) is diagonalizable with four real eigenvalues
M= (@ = Q)= @k Vo) = (@ + 0 (32)
where the averaged wave-celerity is ¢, = 4/ (gy 7L) k- Using the properties of the Jacobian,

it is possible to build a matrix f’k = (e1, €y, €3); which satisfies jk, = (f’jNXf’*l)k, being jNXk
the diagonal eigenvalues matrix and (e,,); the orthogonal basis of eigenvectors, defined
as

1 0 1
=1 M\ (€2)r = 0 @)= | A (33)
Uy k €/ k Uy k

Following [3], the conservative variable gradient oU,, is projected on the eigenvector
basis in order to obtain the wave strength vectors Ay as

Ay = (a1, Gy, @y)f =Py 80, — 80, = Z<&w§w)k (34)

m



111 being

-1 16(huy,) — u, 6(h)
=T
622 _ 5(tht) —Nvt (S(h) (35)
c
- 1 16§(hu,) — u, 6(h)
= —4(h Z
=350 +3 5
112 The bed-pressure and basal resistance momentun source terms on the right hand side

us of (28) are integrated over the discrete space 2; < 2 < Z; as

/Sb dz = H(U,,U;,) = H; = (0, H,0)] (36a)
/ S,di = T(U;,0;) = Ty = (0,7,0)F (36h)

ns  and these momentum edge-contributions can be projected on the eigenvector basis in
us order to obtain the source strength vectors as

(Eb)k = (gbla §b2> Ebs)f = f);zl H, — H;= Z(gbmaw)k (37a)
(]§T>k = (Brla 57'27 /B/TE))g = f);;l Tk — Tk = Z(ngEw)k (37b)

us and the total source strength reads

B, = (1, b1, 54)5 = (Bp + B, )i (38)
17 leading to
~ —1H+T
T2 ¢
pa=0 (39)
~ 1H+T
h=5"%
118 Note that this procedure allows to include the upwind contribution of the real 2D

s bed-pressure and basal resistance source terms into the plane RP at the cell edges. The
0 integration of both contributions at the cell edges are detailed in sections 2.4 and 2.5
21 respectively.

122 One result of Roe’s linearization is that the approximate Riemann solution consists
123 of only discontinuities and hence ﬂ(iﬁ,t) is constructed as a sum of discontinuities or
12+ shocks. Figure 3 shows the wave structure of the approximate solution for subcritical and
s supercritical flow regimes. Using (35) and (38), the intermediate states (blue regions) of
126 the approximate solution at the left and right side of the kth edge, ﬂ; and ﬁj respectively,
127 can be expressed as
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G = > 0 0

;
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t'ﬂ n

2 =0 z; Us 2=0 2;

Figure 3: Approximate solution at the kth cell edge for (left) subcritical and (right) supercritical regime.

U, =0+ (@ — Bu/r) &),

e - (40)

Uf =0, =) [(@w = Bu/) &),
w+

where the subscript m— and m+ under the sums indicate waves travelling inward and
outward the i cell [4]. Note that at & = 0 the solution includes a steady discontinuity
between the intermediate states IAJ; and IAJ]+ [7, 8] as a consequence of including the
momentum source terms into the local plane RP. This steady shock can be expressed as

3

4 T— ﬁwN
U -0; = wz::l (Zew>k (41)

Consequently, the augmented flux at the left and right side of the kth cell edge, ]:t_
and .’Ffr respectively, can be constructed as

Fr =FU0)+ > [l — Bu) ),
- _ 42
Fi=F(0;) = > [t — Bu) &), "
w+
where the subscript m— and m+ under the sums indicate waves travelling inward and
outward the i cell. The relation between the approximate fluxes .’Ft_ and .’F'fL can be
analysed using the Rankine-Hugoniot (RH) relation at & = 0, which includes the steady
contact wave accounting for the momentum sources. The corresponding flux discontinuity
is given by

3
Fi-F = Z(ﬁwgw)k =H, + T (43)

w=1

Therefore, the numerical flux vector 7} in the updating formula (26) of the FV method
is upwind computed as
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\1/7
qn
For |, (44)

my k

whereas the flux-contribution in the updating formula (27) can also be upwind calculated
as

Sgn 1°
SF;=0F; =) [(Mubiw — Bu) ], = | Imn (45)
w— 6mt k

2.2. Entropy correction in transcritical rarefactions

To avoid non-physical result in walls involving transonic rarefactions, an improved
version of the the Harten-Hyman entropy correction [9] is implemented.
The eigenvalues at the left ¢ and right j cells at the kth edge are defined as

(A)ig = (un = )iy (A)ig = (un)iy  (As)iy = (un + )i (46)
Only for wet-wet subcritical walls, i.c. (A )r < 0 & (Ag)x > 0, the entropy fix is

implemented as follows

o Left transcritical rarefaction (A\;); <0 & (A1); >0

(A\); — i

BCE= (M) — (A1)

~ ~ 47
(A )k = ECF — new (A1) (47)
Nk = (M) — ECF
e Right transcritical rarefaction (A3); <0 & (A3); > 0
Ak — (Ag)i
ECF = % (As); >0
B 3/ 3/ (48)

(A3)e = (Ns)i — ECF
(D) = ECF — new (A3

2.8. Dynamic lime step restriction

In order to ensure the stability of the explicitly computed numerical solution, the time
step should be small enough to avoid the interaction of waves from neighbouring Riemann
problems. The dynamical limitation of the time step at each k edge is addressed here
assuming that the fastest wave celerity corresponds to the absolute maximum of the
eigenvalues of J; (30) as

b [max(Pal, gD

Aty = (49)

% Hay que cambiar el calculo de AX) en el codigo (mesh.c) ***

and the global time step At = t"*! — " is limited using the Courant-Friedrichs-Lewy
(CFL) condition



At = CFL rnkin(Atk) (50)

o with CFL < 0.5 for square orthogonal meshes and CFL < 1 for the triangular mesh
1 topology and 1D-mesh cases.

1

o

1

o

12 2.4. Bed pressure momentum contribution

163 The bed pressure contribution Hy, at the kth cell edge in (39) is computed here as

~ it default
H, = e e (51)
max(H™, H4) if (u, Az) > 0 and (Azs Az) > 0
164 being
165 e Integral approximation:
~. oz*
Hmt:—gw(h*—|;|> (SZ*
—he i . . 52
) h, if Az < 0 ) h; }f Az, <0 and zg < 2 (52)
h* = b i Am >0 0z =< h; if Az, >0 and zg < 2
J b= Az, otherwise
166 e Differential approximation: o N
HY% = —g,h Az, (53)
167 The mass flux at the # = 0 position satisfies the conservative condition (g,);~ =

(qn)t+ = ¢%. Furthermore, we compute the characteristic frictionless mass flux ¢* for the
o kth cell edge as

1

o
@

1

o

¢ = (huy); + T — Ebl if subcritical Xz > (0 or supercritical Xg <0

~ 54
¢ = (huy); — asAs + Bps  if subcritical Ay < 0 or supercritical A\; > 0 (54)
: Fyr—— i 5 Yy ——p* 5
(hu”);i (7 WN)T'
: 9 (hu.,,_)t
as). o, ' |
J (hu,,,)j (hun_),
¢ , e o : .
i i
tn. +1 X ET ;-,[2 tml 11 /Tz
A /T:s 13
t” e — < t?ﬁ L — -
T =0 Vi X I=0 T

Figure 4: Inner states for the normal mass flux in edges with right-direction subcritical flow.
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2.5. Basal resistance momentum contribution

The basal resistance contribution T}, at the kth cell edge in (39) should be opposite to
the discharge and is hence defined as

~2 172

T, = sgn (¢F) gyh S dine  default (55)
0 if - =0

where the averaged Manning factor is n, = %(nbi—i—nbj), the characteristic velocity modulus
is U= (Jw| + |uy|), the characteristic flow depth is hye, = max(hs, h;), and sgn(g})
denotes the direction of the frictionless discharge throughout the edge. The term d;,; is
the friction integration distance, calculated as

A, = { [N Az + iy Ay| - default

d. if U, <le—3 (56)

being (7, yy)r the components of the unity vector of the flow direction at the kth edge
in the global framework, calculated as

_ 1 < up U ) _ 1 ( ;i v; )
Nye = 5 | 7=+ 77— Nuy = s | 77 T 175 (57)
2 \|Jwif * uy] T2\l

3. Explicit integration of momentum source terms

The correct integration of the momentum source terms Hy (36a) and Ty (36b) for
the local plane RP associated to the kth cell edge ensures the well-balanced property of
the augmented Riemann solver [10]. This well-balanced character ensures equilibrium in
quiescent and steady states, as well as avoids numerical oscillations in the solution when
large momentum sources appear [11, 12].

3.1. F-limitation for the basal friction

The explicit integration of the basal resistance term T}, (36b) is not straight-forward
and requires a careful treatment in order to avoid numerical instabilities and additional
time step restrictions. These additional time step restrictions can lead to a marked in-
crease of the computational time required by the model. The consequence is a reduction
of the efficiency, regardless of how the scheme is implemented (programming language,
parallel computing, available hardware, etc).

The friction momentum contribution T (36b) in the local plane RP at the intercell
edge is defined as

0
T.= | T, (58)
0

and the source strengths linked to the basal friction are expressed as

~ _Tk

671 — ﬁ

/81'2 =0 (59)
o k

/BTS — ng



195 We can always compute the characteristic mass flux including friction (qn)t_ =
(g2)r" = g\ for the kth cell edge as
107 Rk Quitar el condicional de regimen el codigo (water.cu

1

©
>

)***

¢ =q. — Bn (60)

8 Note that this expression (60) can be directly applied regardless of the flow direction
o and subcritical /supercritical regime occurs, since differences in the wave configuration are
o actually included in the characteristic frictionless mass flux ¢’ computation. Physically,
1 the basal resistance term should always act slowing down the flow. Therefore, we define
» the following limitation for the resistance source strengths

3, - { ~T,,/(2¢) defauls

1

©

1

©

2

=3

2

=]

2

=]

0 if ¢4, <0 (61)
57'3 = _/BTI
203 Additionally, the friction source term is limited by a kinematic condition. We impose

24 that momentum dissipated at the intercell edge due to the basal friction term should be
25 in the same order of magnitude as the averaged kinematic energy at the edge, so

T, U |un,
Tl o o (Ul (62)
Gop h 2 G

26 3.2. P-correction for the flow depth

207 The momentum source integration can lead to unphysical values of the cell-averaged

s flow depth in subcritical wet-wet edges and requires a numerical fix. The P-corrention
o enforces non-negative values of the flow depth for the intermediate states at both sides of
o the intercell edge. B B

211 Only in wet-wet subcritical walls, ie. (A\)r < 0 & (A3)r > 0, the convective
» intermediate state for the flow depth h* at both sides of the edge, including the entropy-
a3 fix extra wave, can be calculated as

2|

=]

2

=]

2

[t

2

[t

1
A\

hi = hl' — a3+ ==&y (63b)
A3

212 and the augmented intermediate states for the flow depth at the left and right side of the
a5 edge, h; and hj respectively, must satisfy

h;:hf—ﬁzo (64a)
A1
+ % 53
hi=n;+=2>0 (64b)
A3
216 This limitation leads to a unique suitability range for the value of the momentum

27 source strength (; which ensures positivity for the intermediate states of h at both sides
28 of the edge, imposed as

12



. > g * g . .

5,12 A)‘vl hfk Lower h'ml.t (65a)
< A3 hj Upper-limit

Bs = —p (65b)

s 4. Wet-dry front treatment

2

[t

220 Tracking wet-dry fronts is one of the most challenging issues when computing realistic

a1 cases. We apply a four-step procedure to avoid numerical issues in wet-dry fronts:

N

2 1. Within the edge-contribution calculation loop, at wet-dry fronts, we set the no-
223 reflective-wall condition if the flow depth inner state at the dry-cell, i.e. h; and hj
22 for left and right dry-cells respectively, is negative:
( Right solid-wall cond. &
3
Right dry-cell 3 0a,)5 = > (Ml — Bu
gn y712 h—"_:hrl—Oé3+&<O (q)k wz::l( a B)
hz‘ > 10 J J A3 -
& (5mn)¢k_ =0
h? < 10—12 (5mt)k =0
| otherwise Normal wall
(66)
( Left solid-wall cond. &
3
Left dry-cell & 0qn); = AwCly — B
n y_12 h-*:hn+041—§—1<0 (q)k wz::l( a 5)
hi <10 v t A1 1+
h;z Z 10—12 ((5mt)k =0
| otherwise Normal wall
(67)
225 *#% Cambiar el calculo del inner h state, sacando la onda de correcion de la entropia
226 HAK
227 2. Within the cell updating loop, we set null x— and y—momentum for cells with flow
228 depth A} lower than an user-defined threshold, refereed to as minimum-depth A,,;,:
Minimum-depth cells [ (hu)? =0 (69)
R < Bpin (hv)? =0

229 3. At wet-dry fronts, we identify each wet-dry edge with a upward bed level step higher
230 than the flow depth in the wet-cell and we also set solid-wall condition at these edges:

Left dry-cell

A < 10712 (2)7 > (2 + h)}  Left solid-wall cond.
Z (69)
n « 12 otherwise Normal wall

hj > 10

13



Right dry-cell

B> 1012 (2 + h); < (2)} Right solid-wall cond.
L (70)
& 1o otherwise Normal wall
h} <10
231 4. Finally, within a specific cell loop, we set null normal momentum at wet-cells for
232 each edge with solid-wall condition or closed boundary condition, as:
Solid-wall cond. (hu)it = (hu);’ = gni e
I (hv)} = (hv)} — qniny (71)

Closed boundary cond. with g = (hw)? ng + (hv) n,

14
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